CHAPTER TWELVE
CORRELATIONAL RESEARCH AND MULTIPLE REGRESSION

Chapter objectives:

• Understand that correlation does not mean causation

• Understand that correlations research may be explanatory or predictive.

• Understand the difference between bivariate and multivariate analysis

• Understand the purpose of explanatory correlational research, predictive correlational research (regression analysis), and factor analysis research.

• Understand how logistic regression, hierarchical linear modelling, and causal modelling approaches are used in correlational predictive studies.

• Understand what the statistical tests used in data analysis in correlational research
Correlational research provides a new angle from which to understand relationships and a new set of analytic tools to calculate and approximate causality. It is a form of non-experimental research that uses correlation statistics to explore the relationship between and among variables within a group of subjects.

Correlational research has two purposes:

1. **Explanation**: the description of the direction and strength of relationships between and among variables within a group.

2. **Prediction**: the estimation of the degree to which a change in one variable (the predictor variable) will account for the change in another variable (the criterion variable) for subjects in a group.
Though based on weaker causal inferences than experiments, correlational research explores possible relationships in a way that experiments cannot. Findings from correlational studies may be used to suggest ideas for treatments as well as outcomes for experimental research.

Correlational research is non-experimental research and, as such, is similar to non-experiments of group differences in several ways. Like non-experiments of groups differences correlational research (1) is a non-experiment that cannot confirm a casual relationship, even though it can be used to explore complex causal relationships. “Correlation does not mean causation” is a mantra for correlations, (2) does not involve an intervention or allow the researcher to manipulate the independent variable, (3) uses inferential statistics to determine statistical significance, (4) is evaluated on the basis of statistical conclusion validity and external validity, (5) is used when experimental conditions cannot be met in social settings or when it would be unethical to expose a group of subjects to a dangerous treatment or deny them access to a promising one.

Sampling and Data Collection

Samples in correlation studies should be randomly selected from a target population and described in detail. This enables the researcher to generalize results to other subjects in the population and to similar samples. In addition, the sample should be of adequate size to enable the researcher to apply the appropriate statistics. In fact, the larger the sample, the better. Larger samples add to representativeness and also help to reduce error.
The most commonly used data collection instruments are survey questionnaires academic and psychological tests. These allow researchers to investigate relationships between and among variables for one group. The data may be archived or a collected for the purpose of the study. **Measures with strong construct validity and predictive validity are preferred.**

Data Analysis

Data analysis in correlational research has rising levels of complexity as it considers increasingly more variables and moves from explanation to prediction.

- A *simple correlation* (or *bivariate analysis*) fulfills the purpose of explanation; it calculates the direction and strength of the relationship between two variables.
- A *simple correlation* is represented by the correlation coefficient or the Pearson Product Moment correlation \((r)\) for continuous variables. *The Spearman Rho (RHO)* is used for ordinal (rank-ordered) ordered variables, and the PHI Coefficient (PHI) and Connors V \((V)\) are used for categorical variables]
- A *multiple correlation* (or *multivariate analysis*) calculates the direction and strength of the relationship of two or more variables to a single variable.
- A *multiple correlation* is represented by \(R\) *(the known as “big R”).
- __

_
• A simple regression fulfills the purpose of prediction: it estimates the degree to which a variable (called the predictor variable or PV) accounts for change in another variable (called the criterion variable or CV).

• A simple regression It is represented by the coefficient of determination \(r^2 \)

• A multiple regression predicts how a combination of predictor variables accounts for change in a criterion variable.

• A multiple regression is represented by the correlation of determination \(R^2 \) (also known as “big R squared”).

Basic Designs

The most basic correlational designs use simple correlations and regressions and multiple correlations and regressions. The two examples below demonstrate how these designs work.

A Study of College Success

Most selective colleges use the SAT as a filter for admitting students. The assumption is that the SAT is
Cruz conducted a study of the relationship of SAT to freshman success, which they operationalized as the GPA at the end of the freshman year at the university (UCSCGPA).

The results showed a weak positive correlation \((r = 0.29) \) that was statistically significant \((p \leq 0.00001) \).

The conclusion of this study might be presented as, “There is a significant positive correlation between SAT scores and success in college.” While true in fact, this statement overlooks an important consideration: a weak, statistically significant correlation is still a weak correlation. In effect, this correlation is not substantial enough to be important or useful; nor does it account for much in the way of differences in freshman GPA, as evidenced by the simple regression analyse that followed. The researchers calculated the variance (change) in the freshman GPA (the criterion variable) that could be accounted for by the SAT I (predictor variable). This required squaring the \(r \) \((r^2 = 0.084) \). This means the SAT I predicted 8.4% of the variance (or change) in freshman GP, leaving 93.6% of the variance unaccounted for.
To investigate further the predictors of college success, the researchers added two more predictor variables (SAT II scores and high school GPA) and conducted a multiple regression analysis.

Figure 2. PV’s = SAT I, SAT II, HSGPA CV= Freshman GPA

The first step in the analysis was to calculate the correlation of each PV to the CV. The correlation matrix below shows these correlations.

<table>
<thead>
<tr>
<th></th>
<th>UCSC GPA</th>
<th>SAT I</th>
<th>SAT II</th>
<th>HSGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSC GPA Pearson Sig</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAT I Pearson r Sig</td>
<td>0.290</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAT II Pearson r Sig</td>
<td>0.306</td>
<td>0.816</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Sig</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSGPA Pearson r Sig</td>
<td>0.345</td>
<td>0.159</td>
<td>0.220</td>
<td>1.000</td>
</tr>
<tr>
<td>Sig</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Correlation Matrix of UCSC GPA and SAT I, SAT II, HSGPA
To read the matrix, look across each row or look down each column. You will see that there is a perfect correlation of UCSCGPA to itself, a weak correlation to SAT II (r = .029), and a somewhat stronger correlation to SAT II (r = .306), and the strongest correlation to o HSGPA (r=0.345). Note that all of these correlations are also statistically significant (p=.0000).

The next step was to calculate the Multiple Correlation, R = .425. The R is not equal to the sum of the individual r-values; instead it is based on a complex algorithm: To calculate the combined variance for the three-predictor variables, the R was squared: \(R^2 = .181 \). This means that together the three variables accounted for 18.1% of the variance in freshman GPA. This is better than any one criterion taken separately, but it still leaves 81.9% of the difference in freshman GPA unaccounted for.

The researchers concluded that for UCSC freshmen: (1) The single best predictor of first-year GPA was High School GPA, which accounted for 11.9% of the variance (2) The next best predictor was SAT II scores, which accounted for 9.4% of the variance, (3) SAT I scores were the lowest predictor and accounted 8.4% of the variance respectively, and (4) The combination of all three of the predictor variables explained more of the variance in freshman GPA than any of the variables taken alone. Together they accounted for 18.1% of the UCSC freshman GPA.

Predictors of Teacher Stress:

Adams (1991) conducted a more complex multiple regression study which began with six predictor variables. Drawing the sample from vocational teachers in
one state, the researcher examined to what degree the variables could predict teacher stress. The researcher selected these predictor variables after conducting an extensive review of prior research.

PV’s= role preparation, job satisfaction, life satisfaction, illness symptoms, locus of control, and self esteem

CV= teacher stress

In the first step of analysis, the researchers correlated each of the predictor variables to the criterion variable. The figure below represents those correlations.

As this figure shows, each predictor variable had a moderate to moderately high correlation with teacher stress. One variable, locus of control, had a negative correlation, \(r=-0.375 \), with teacher stress. That means that as the locus of control...
goes up (feeling in control of yourself) teacher stress goes down. That is, “the less control vocational teachers believe they have over the events that occur in their lives, the more intense is their stress” (1999, p. 9)

In the next two steps, the researchers calculated the R (multiple correlation), the combination of all predictor variables and then squared the R.

$R = 0.746659$

$R^2 = 55.75\%$.

This meant that almost 56% of the variance in stress was accounted for by the combination of variables.

The final step involved the researchers in a process that identified which of the six predictors had the most impact. This required an examination of the probability level for each variable. The table from below provided this information.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Metric Regression Coefficient B</th>
<th>Standard Error</th>
<th>Standard Regression Coefficient β (beta)</th>
<th>t-test (t-value)</th>
<th>Probability (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role preparedness</td>
<td>.382202</td>
<td>.14686</td>
<td>0.1344</td>
<td>2.60</td>
<td>0.0092</td>
</tr>
<tr>
<td>Job satisfaction</td>
<td>.009817</td>
<td>.009817</td>
<td>0.0056</td>
<td>0.10</td>
<td>0.9125</td>
</tr>
<tr>
<td>Life satisfaction</td>
<td>.135020</td>
<td>.099590</td>
<td>0.0673</td>
<td>0.99</td>
<td>0.3229</td>
</tr>
<tr>
<td>Illness symptoms</td>
<td>.833539</td>
<td>.086980</td>
<td>0.05180</td>
<td>9.58</td>
<td>0.0000</td>
</tr>
<tr>
<td>Locus of control</td>
<td>.044400</td>
<td>.027119</td>
<td>-0.0813</td>
<td>1.64</td>
<td>0.0108</td>
</tr>
</tbody>
</table>
Table 2. Teacher Internal Characteristics - multiple Regression Results Variables of Internal – Related Variables on Vocational Teacher Stress (Adams)

To explain how this works, we like to make an analogy to the TV program Survivor. In the program, a large group of contestants begin on the island, but there is progressive elimination of contestants. With multiple regressions, the same process occurs. The researcher can "kick some variables off the island" by looking at the p-values to see which are significant correlations. In the last column on the right on Table 4, you will see the p values (in bold) for each predictor.

- The three with p > .05 “leave the island” and are not included in the calculation of R and R^2. These are job satisfaction ($p = .0925$), life satisfaction ($p = .03229$), and locus of control ($p = .1018$).

- The three with $p < .05$ get to stay. These are illness symptoms ($p = .0000$), role preparedness ($p = .0092$), and self-esteem ($p = .0053$).

These are the three variables that are included in the calculation of R and the R^2. What the R^2 tells us, then, is the following. Taken together, illness symptoms, role preparedness, and self-esteem account for 55.75% of the variance in teacher stress.

This table also lists the metric regression coefficient or β weight for each predictor variable. These appear in the first column on the left. These are special correlations that indicate how much of the change in the criterion variable can be attributed to each predictor variable. The three highest β weights are
\[\beta \text{ for illness symptoms} = .518; \]
\[\beta \text{ for role preparedness} = .134 \]
\[\beta \text{ for self esteem} = .156 \]

This means that for every one-unit change in the measure of illness symptoms, there is a 0.518 unit change in the measure of teacher stress; for every unit of role preparedness there is a 0.134 unit of change in stress; and for each unit of change in self-esteem, there is a 0.158 unit of change in teacher stress. The size of the beta weights is another indication of the pre-eminence of some predictor variables over others.

This is a rather complicated study and requires careful attention to detail. It is important to remember the researcher can eliminate some variables from consideration by looking at their beta-weights and p-values.

Advanced Regression Analyses

In addition to the approaches described above, you may encounter more complex regressions that use more complex statistics. The aim of these approaches is to more closely approximate causation. The most commonly used are logistic regression, hierarchical linear modeling, and causal modeling.
Logistic Regressions

Logistic regressions (logit) predict the variance in one categorical criterion variable that can be explained by more than one continuous or categorical predictor variables. *Odds-Ratio (OR)* is the statistic used to calculate the odds (probability) that criterion variable will increase due to the influence of the predictors variables. For example, Gofin, and Avitzour, (2012) used a logistic regression to analyze the likelihood of boys versus girls as bullies. Both the predictor and criterion variables were categorical variables. The researchers found a higher odds-ratio (a significant difference) for boys as traditional bullies.

Hierarchical Linear Modelling

Hierarchical Linear Modelling (HLM) is an approach to analysis of hierarchical or nested data; it is used to estimate the influence of predictor variables at different levels; for example, the effects of students’ families, school, and country on students’ science achievement. For example Ming, C., (2007) examined the inter-relationships of country and family on students’ science achievement. The study was based on data from the 2002 PISA (Program of International Student Assessment) study of fifteen countries.

\[PV’s = \text{gross domestic product (GNP) of country} \]
\[\text{equality of household incomes (GINI) of country}. \]
\[CV’s = \text{student achievement (Level 1), school achievement (Level 2), country achievement (Level 3)} \]
Causal Modeling

Causal modeling regressions predict outcome of multiple PV’s on one or more CV’s, calculate the interactions/indirect effects of PV’s on CV’s, and calculate interactions / indirect effects of PV’s on other PV’s. Causal modeling is based on correlations with the purpose of examining complex interactions of variables. For example, Phan (2010) combined two separate theoretical orientations achievement goals and study processing strategies into one overall causal model. Over a two-year period theoretical constructs were measured with a variety of self-reported inventories and academic performance as measured by overall course marks and final examination scores. The results showed that there was a relationship between two sets of predictors: 1) performance-approach goals, mastery goals, effort, and academic performance, and 2) performance-approach goals, deep processing, mastery goals, effort, and academic performance.

Factor Analysis
• **Factor analysis** is a special application of correlations research that is used to explore and develop the meaning of a theoretical construct that is being measured.

Krathwohl (2004, p. 430) defined factor analysis “a statistical procedure that, by examining interrelationships among items or tests, help to identify the dimensions underlying a measure and hence what it is measuring.” Because research concerns itself with understanding theoretical constructs, like achievement, stress, and motivation, it is important to develop a measure or instrument that quantifies the construct, which is also known as a *factor*. Factor analysis is used to examine and identify connections and patterns in lengthy surveys and tests and to identify the general construct that is being measured. In standardized tests that measure achievement or evaluate a clinical condition, all of the items on the test relate to one factor. That is, they all measure different aspects of the same construct and their supporting ideas. For example, tests are labelled with the general construct they measure, such as general intelligence, and they have sub-scales or sub-tests that measure aspects of the construct, like spatial, quantitative, and verbal intelligence.

Factor analysis sounds more complicated than it really is. It all comes back to understanding the coefficient of correlation, with values ranging from +1.0 to -1.0. A factor analysis quantifies the interrelationships among ideas, thus making it an empirical, quantitative reasoning process. The values or loadings of factors are special types of correlations. The results are interpreted similarly to correlations, and in this case, the bigger the correlations, called *factor scores or factor loadings*,
the better. There are no tests of statistical significance, no p-values, so the interpretation is done strictly with the factor scores (factor loadings).

Types of Factor Analysis

There are two types of factor analysis, exploratory and confirmatory.

• *Exploratory factor analysis* seeks to discover the patterns of interrelationships among factors,

• *Confirmatory factor analysis* is a follow up procedure to determine whether the predicted interrelationships are found.

Both types examine the complex interrelationships of general constructs and their unique, underlying factors; and both types yield quantitative results that represent the size of the empirical relationships between and among these factors and constructs.

Example of Factor Analysis

Cheng (2011) completed a factor analysis of a survey instrument that explored the relationship between self-regulated learning and learning performance. The abstract reads as follows.

The paper aims to explore the relationship between students’ self-regulation ability and their learning performance. In this study, self-regulation ability is conceptualized by four dimensions: learning motivation, goal setting, action control and learning strategies. 6,524 students from 20 aided secondary schools in Hong Kong participated in the questionnaire survey. Factor analysis and reliability test were used to confirm the constructed validity and
the reliability of the survey instrument.

Below is a visual representation of the four factors that comprise the construct of learning performance in this article.

![Diagram of Theoretical Construct and Factors]

Figure 4. Theoretical Construct and Factors

Since there is no way to observe all of these processes directly, the survey approach is used to elicit responses to these correlated processes. The researchers developed a survey questionnaire based on prior research models to measure relevant variables and used factor analysis to detect whether specific items in the questionnaire corresponded to the theoretical constructs of self-regulated learning. Through factor analysis, the authors concluded that the variables were, in fact, measured in the questionnaire and that the questionnaire was valid and reliable, with all Cronbach’s alpha coefficients of variables higher than 0.5. This showed there were positive relationships between learning strategies, action control, goal setting, learning motivation and learning
performance. The authors also conducted multiple regression analyses to sort out the relative effects of each factor as a predictor of learning performance.

Evaluating the Validity of Correlational Studies

Since correlational studies are non-experimental, they cannot be evaluated for internal validity; they are evaluated for statistical conclusion and external population validity, as represented in the table below.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Statistical Conclusion Validity</th>
<th>External (Population) Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>• Statement of a clear research-based hypothesis</td>
<td>• A sound theoretical construct generated through an extensive research review,</td>
</tr>
<tr>
<td></td>
<td>• Clear identification of IV/PV and DV/CV</td>
<td>• Clear identification of IV/PV and DV/CV</td>
</tr>
<tr>
<td>Sample</td>
<td>• Adequate sample size</td>
<td>• Random selection of sample from a clearly defined population or matching of the two groups on key characteristics or</td>
</tr>
<tr>
<td>Measure</td>
<td>• Reliable and valid measures</td>
<td>• Chi square analysis for a matched sample</td>
</tr>
<tr>
<td></td>
<td>• Appropriate statistics for explanation and prediction</td>
<td>• Detailed description the sample</td>
</tr>
<tr>
<td></td>
<td>• Displays of data in matrices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Appropriate alpha level for significance testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A clear description of data sources</td>
<td>• Demonstrated construct validity of the measures in relation to the theoretical construct.</td>
</tr>
<tr>
<td></td>
<td>• Evidence of the reliability of the</td>
<td>• Evidence of the reliability of the</td>
</tr>
</tbody>
</table>
measure.
• Statistically significant results

<table>
<thead>
<tr>
<th>Rating</th>
<th>H</th>
<th>M</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>M</td>
<td>L</td>
</tr>
</tbody>
</table>

Table 3. Evaluating Validity of Correlational Research
Summary

- Correlations research is a form of non-experimental research that uses correlation statistics to quantify the relationship or associations between and among variables.
- Correlation does not mean causation.
- Correlations research may be explanatory or predictive.
- Correlational research depends on large, representative samples.
- Correlational research depends on surveys and questionnaires as measures.
• Data analysis rises in complexity as it moves from explanation to prediction and as the number of variables increases.

• The basic correlational designs are simple correlations / regressions and multivariate correlations/ multiple regressions.

• Simple correlations are represented by a correlation coefficient (r); simple regressions are represented by the coefficient of determination (r^2).

• Multivariate correlations are represented by the multiple correlation (R); multiple regressions are represented by the coefficient of determination (R^2).

• Advanced regression analyses are logical regression, hierarchical linear modeling, and causal modeling.

• Factor analysis is a special application of correlations research that is used to explore and develop the meaning of a theoretical construct that is being measured.

• The two types of factorial analysis are explanatory and confirmatory.

• Correlational research is evaluated on the basis of statistical conclusion validity and external validity.

Key Terms and Concepts

- correlation research
- simple correlations
- bivariate analysis
- r, coefficient of correlation
- simple regression (r^2)
- multivariate analysis
- R multiple correlation
- multiple regression
- R^2 coefficient of determination
- Beta weight
predictor variable criterion variable

logistic regression causal modelling

Hierarchical Linear Modelling (HLM)

factor analysis factor
exploratory factor confirmatory factor

Review, Consolidation, and Extension of Knowledge

1. In your own words,
 a. Describe how correlational studies are similar to and different from non-experiments of group differences
 b. Identify the statistics that explain relationships between and among variables
 c. Identify the statistics that predict how one variable predicts an outcome on another variable
 d. Explain how a correlation can be significant but not important

2. Using an electronic database, search for regression study in your area of interest. Read the article and answer the questions in the Guide below.
3. Using the guide as a template write a critique of about 750 words of the non-experimental group differences study you selected. See the Appendix for an Exemplar.

Guide to Reading and Critiquing a Regression Study

Research Review and Theory:

What is the purpose of the research review?

Does it establish an underlying theory (big ideas) for the research?

Purpose and Design:

What is the purpose of the study?

Is there a hypothesis or a research question? If so, what is it? If not, can you infer the question from the text of the article?

What is the design?

What are the predictor and criterion variables? Identify each type of variable in the study. (PV=, CV=)

Sampling:

How is the sample selected?

Who is in the sample? What are the characteristics of the sample?

What is the sample size?

Data Collection:

What measures are used for the criterion variable?

What is the format of the measure (s)
Are there indications of validity and reliability of the measures? What are they (r-values)?

Data Analysis and Results:

What statistics are used to analyze the data?

Were the results (p-values) significant or non-significant?

What does the researcher conclude about the findings?

Evaluation of Validity:

How do you evaluate statistical conclusion validity? What is your rationale?

How do you evaluate external population validity? What is your rationale?